Showing posts with label planets. Show all posts
Showing posts with label planets. Show all posts

Solar System Montage -Jet Propulsion Laboratory In Pasadena


This Solar System montage of planetary imagery taken by spacecraft managed by the Jet Propulsion Laboratory in Pasadena, CA. Included are (from head to foot) images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus and Neptune. The spacecraft accountable for these metaphors are as follows the Mercury picture was taken by Mariner 10, the Venus illustration by Magellan, the Earth image by Galileo, the Mars image by Viking, and the Jupiter, Saturn, Uranus and Neptune picture by Voyager.

The inner planets are Mercury, Venus, Earth, Moon, and Mars are roughly to scale to each other the external planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. Actual diameters are listed below: Sun 1,390,000 km Mercury 4,879 km Venus 12,104 km Earth 12,756 km Moon 3,475 km Mars 6,794 km Jupiter 142.984 km Saturn 120,536 km Uranus 51,118 km Neptune 49,528 km Pluto 2,390 km

NASA Selects Investigations For Future Key Planetary Mission

http://nasa-satellites.blogspot.com/
NASA has selected three science investigations from which it will pick one potential 2016 mission to look at Mars' interior for the first time; study an extraterrestrial sea on one of Saturn's moons; or study in unprecedented detail the surface of a comet's nucleus. Each investigation team will receive $3 million to conduct its mission's concept phase or preliminary design studies and analyses. After another detailed review in 2012 of the concept studies, NASA will select one to continue development efforts leading up to launch. The selected mission will be cost-capped at $425 million, not including launch vehicle funding.

NASA's Discovery Program requested proposals for spaceflight investigations in June 2010. A panel of NASA and other scientists and engineers reviewed 28 submissions. The selected investigations could reveal much about the formation of our solar system and its dynamic processes. Three technology developments for possible future planetary missions also were selected. "NASA continues to do extraordinary science that is re-writing textbooks," said NASA Administrator Charles Bolden. "Missions like these hold great promise to vastly increase our knowledge, extend our reach into the solar system and inspire future generations of explorers."

The planetary missions selected to pursue preliminary design studies are:

-- Geophysical Monitoring Station (GEMS) would study the structure and composition of the interior of Mars and advance understanding of the formation and evolution of terrestrial planets. Bruce Banerdt of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., is principal investigator. JPL would manage the project.

--Titan Mare Explorer (TiME) would provide the first direct exploration of an ocean environment beyond Earth by landing in, and floating on, a large methane-ethane sea on Saturn's moon Titan. Ellen Stofan of Proxemy Research Inc. in Gaithersburg, Md., is principal investigator. Johns Hopkins University's Applied Physics Laboratory in Laurel, Md., would manage the project.

NASA Spacecraft Reveals Dramatic Changes In Mars' Atmosphere

http://nasa-satellites.blogspot.com/
NASA's Mars Reconnaissance Orbiter (MRO) has discovered the total amount of atmosphere on Mars changes dramatically as the tilt of the planet's axis varies. This process can affect the stability of liquid water if it exists on the Martian surface and increase the frequency and severity of Martian dust storms. Researchers using MRO's ground-penetrating radar identified a large, buried deposit of frozen carbon dioxide, or dry ice, at the Red Planet's south pole. The scientists suspect that much of this carbon dioxide enters the planet's atmosphere and swells the atmosphere's mass when Mars' tilt increases. The findings are published in a report in the journal Science.

The newly found deposit has a volume similar to Lake Superior's nearly 3,000 cubic miles. The deposit holds up to 80 percent as much carbon dioxide as today's Martian atmosphere. Collapse pits caused by dry ice sublimation and other clues suggest the deposit is in a dissipating phase, adding gas to the atmosphere each year. Mars' atmosphere is about 95 percent carbon dioxide, in contrast to Earth's much thicker atmosphere, which is less than .04 percent carbon dioxide. "We already knew there is a small perennial cap of carbon-dioxide ice on top of the water ice there, but this buried deposit has about 30 times more dry ice than previously estimated," said Roger Phillips of Southwest Research Institute in Boulder, Colo. Phillips is deputy team leader for MRO's Shallow Radar instrument and lead author of the report.

"We identified the deposit as dry ice by determining the radar signature fit the radio-wave transmission characteristics of frozen carbon dioxide far better than the characteristics of frozen water," said Roberto Seu of Sapienza University of Rome, team leader for the Shallow Radar and a co-author of the new report. Additional evidence came from correlating the deposit to visible sublimation features typical of dry ice. "When you include this buried deposit, Martian carbon dioxide right now is roughly half frozen and half in the atmosphere, but at other times it can be nearly all frozen or nearly all in the atmosphere," Phillips said.

Cassini Probe Sees Electric Link With Saturn And One Of Its Moons

http://nasa-satellites.blogspot.com/
NASA is releasing the first images and sounds of an electrical connection between Saturn and one of its moons. The data collected by the agency's Cassini spacecraft enable scientists to improve their understanding of the complex web of interaction between the planet and its numerous moons. The results of the data analysis are published in the journals Nature and Geophysical Research Letters. Scientists previously theorized an electrical circuit should exist at Saturn. After analyzing data that Cassini collected in 2008, scientists saw a glowing patch of ultraviolet light emissions near Saturn's north pole that marked the presence of a circuit, even though the moon is 150,000 miles (240,000 kilometers) away from the planet.

The patch occurs at the end of a magnetic field line connecting Saturn and its moon Enceladus. The area, known as an auroral footprint, is the spot where energetic electrons dive into the planet's atmosphere, following magnetic field lines that arc between the planet's north and south polar regions. "The footprint discovery at Saturn is one of the most important fields and particle revelations from Cassini and ultimately may help us understand Saturn's strange magnetic field," said Marcia Burton, a Cassini fields and particles scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It gives us the first visual connection between Saturn and one of its moons."

The auroral footprint measures approximately 750 miles by less than 250 miles, covering an area comparable to California or Sweden. At its brightest, the footprint shone with an ultraviolet light intensity far less than Saturn's polar auroral rings, but comparable to the faintest aurora visible at Earth without a telescope in the visible light spectrum. Scientists have not found a matching footprint at the southern end of the magnetic field line. "Cassini fields and particles instruments found particle beams aligned with Saturn's magnetic field near Enceladus, and scientists started asking if we could see an expected ultraviolet spot at the end of the magnetic field line on Saturn," said Wayne Pryor, a lead author of the Nature study released today, and Cassini co-investigator at Central Arizona College in Coolidge, Ariz. "We were delighted to find the glow close to the 'bulls-eye' at the center of our target."

NASA Spacecraft Provides Travel Tips For Mars Rover

http://nasa-satellites.blogspot.com/
NASA's Mars Opportunity rover is getting important tips from an orbiting spacecraft as it explores areas that might hold clues about past Martian environments. Researchers are using a mineral-mapping instrument aboard NASA's Mars Reconnaissance Orbiter (MRO) to help the rover investigate a large ancient crater called Endeavour. MRO's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is providing maps of minerals at Endeavour's rim that are helping the team choose which area to explore first and where to go from there. As MRO orbits more than 150 miles high, the CRISM instrument provides mapping information for mineral exposures on the surface as small as a tennis court.

"This is the first time mineral detections from orbit are being used in tactical decisions about where to drive on Mars," said Ray Arvidson of Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers and a co-investigator for CRISM. Opportunity's science team chose to begin driving the rover toward the 14-mile-wide crater in 2008, after four years studying other sites in what initially was planned as a three-month mission. The rover has traveled approximately nine miles since setting out for Endeavour crater. It will take several months to reach it.

The team plans for Opportunity's exploration of Endeavour to begin at a rim fragment called Cape York. That feature is too low to be visible by the rover, but appears from orbit to be nearly surrounded by water-bearing minerals. The planned route then turns southward toward a higher rim fragment called Cape Tribulation, where CRISM has detected a class of clay minerals not investigated yet by a ground mission. Spacecraft orbiting Mars found these minerals to be widespread on the planet. The presence of clay minerals at Endeavour suggests an earlier and milder wet environment than the very acidic wet one indicated by previous evidence found by Opportunity.

NASA Scientists Theorize Final Growth Spurt For Planets

http://nasa-satellites.blogspot.com/
A team of NASA-funded researchers has unveiled a new theory that contends planets gained the final portions of their mass from a limited number of large comet or asteroid impacts more than 4.5 billion years ago. These impacts added less than one percent of the planets' mass. Scientists hope the research not only will provide a better historical picture of the birth and evolution of Earth, the moon and Mars, but also allow researchers to better explore what happened in our solar system's beginning and middle stages of planet formation. “No one has a model of precisely what happened at the end of planet formation we’ve had a broad idea but variables such as impactor size, the approximate timing of the impacts, and how they affect the evolution of the planets are unknown,” said William Bottke, principal investigator from the Southwest Research Institute (SWRI) in Boulder, Colo.

This research hopefully provides better insights into the early stages of planet formation.” The team used numerical models, lunar samples returned by Apollo astronauts and meteorites believed to be from Mars to develop its findings. The scientists examined the abundances of elements such as gold and platinum in the mantles, or layers beneath the crust, of Earth, the moon and Mars. Consistent with previous studies, they concluded the elements were added by a process called late accretion during a planet's final growth spurt. "These impactors probably represent the largest objects to hit Earth since the giant impact that formed our moon," Bottke said. “They also may be responsible for the accessible abundance of gold, platinum, palladium, and other important metals used by our society today in items ranging from jewelry to our cars’ catalytic convertors.”

The results indicate the largest Earth impactor was between 1,500 - 2,000 miles in diameter, roughly the size of Pluto. Because it is smaller than Earth, the moon avoided such enormous projectiles and was only hit by impactors 150 - 200 miles wide. These impacts may have played important roles in the evolution of both worlds. For example, the projectiles that struck Earth may have modified the orientation of its spin axis by 10 degrees, while those that hit the moon may have delivered water to its mantle. "Keep in mind that while the idea the Earth-moon system owes its existence to a single, random event was initially viewed as radical, it is now believed that large impacts were commonplace during the final stages of planet formation,’ Bottke said. “Our new results provide additional evidence that the effects of large impacts did not end with the moon-forming event."

Using Planet Colors to Search for Alien Earths

http://nasa-satellites.blogspot.com/
Earth is invitingly blue. Mars is angry red. Venus is brilliant white. Astronomers have learned that a planet's "true colors" can reveal important details. For example, Mars is red because its soil contains rusty red stuff called iron oxide. And the famous tint of our planet, the "blue marble"? It's because the atmosphere scatters blue light rays more strongly than red ones. Therefore the atmosphere looks blue from above and below. Planets around other stars probably exhibit a rainbow of colors every bit as diverse as those in our solar system. And astronomers would like to eventually harness color to learn more about exoplanets. Are they rocky or gaseous or earthlike?

In a study recently accepted for publication in The Astrophysical Journal, a team led by NASA astronomer Lucy McFadden and UCLA graduate student Carolyn Crow describe a simple way to distinguish between the planets of our solar system based on color information. Earth, in particular, stands out clearly among the planets, like a blue jay in a flock of seagulls. "The method we developed separates the planets out," Crow says. "It makes Earth look unique." This suggests that someday, when we have the technology to gather light from individual exoplanets, astronomers could use color information to identify earthlike worlds. "Eventually, as telescopes get bigger, there will be the light-gathering power to look at the colors of planets around other stars," McFadden says. "Their colors will tell us which ones to study in more detail."

The project began in 2008, when Crow teamed up with McFadden, her faculty mentor at the University of Maryland in College Park. McFadden currently heads university and post-doctoral programs at NASA's Goddard Space Flight Center in Greenbelt, Maryland. New color information about Earth, the moon, and Mars became available, thanks to NASA's Deep Impact spacecraft. En route to a planned encounter this November with Comet 103P/Hartley 2, Deep Impact observed Earth. The idea was to determine what our home looks like to alien astronomers and eventually use that insight to figure out how to spot earthlike worlds around other stars. As Deep Impact cruised through space, its High Resolution Instrument (HRI) measured the intensity of Earth's light. HRI is an 11.8-inch (30 cm) telescope that feeds light through seven different color filters mounted on a revolving wheel

Chandra Finds Evidence for Stellar Cannibalism

http://nasa-satellites.blogspot.com/
Evidence that a star has recently engulfed a companion star or a giant planet has been found using NASA's Chandra X-ray Observatory. The likely existence of such a "cannibal" star provides new insight into how stars and the planets around them may interact as they age. The star in question, known as BP Piscium (BP Psc), appears to be a more evolved version of our Sun, but with a dusty and gaseous disk surrounding it. A pair of jets several light years long blasting out of the system in opposite directions has also been seen in optical data. While the disk and jets are characteristics of a very young star, several clues including the new results from Chandra suggest that BP Psc is not what it originally appeared to be.

Instead, astronomers have suggested that BP Psc is an old star in its so-called red giant phase. And, rather than being hallmarks of its youth, the disk and jets are, in fact, remnants of a recent and catastrophic interaction whereby a nearby star or giant planet was consumed by BP Psc. When stars like the Sun begin to run of nuclear fuel, they expand and shed their outer layers. Our Sun, for example, is expected to swell so that it nearly reaches or possibly engulfs Earth, as it becomes a red giant star. "It appears that BP Psc represents a star-eat-star Universe, or maybe a star-eat-planet one," said Joel Kastner of the Rochester Institute of Technology, who led the Chandra study. "Either way, it just shows it's not always friendly out there."

Several pieces of information have led astronomers to rethink how old BP Psc might be. First, BP Psc is not located near any star-forming cloud, and there are no other known young stars in its immediate vicinity. Secondly, in common with most elderly stars, its atmosphere contains only a small amount of lithium. Thirdly, its surface gravity appears to be too weak for a young star and instead matches up with one of an old red giant. Chandra adds to this story. Young, low-mass stars are brighter than most other stars in X-rays, and so X-ray observations can be used as a sign of how old a star may be. Chandra does detect X-rays from BP Psc, but at a rate that is too low to be from a young star. Instead, the X-ray emission rate measured for BP Psc is consistent with that of rapidly rotating giant stars.

NASA Satellites Reveal Surprising Connection Between Beetle Attacks, Wildfire

http://nasa-satellites.blogspot.com/
If your summer travels have taken you across the Rocky Mountains, you've probably seen large swaths of reddish trees dotting otherwise green forests. While it may look like autumn has come early to the mountains, evergreen trees don't change color with the seasons. The red trees are dying, the result of attacks by mountain pine beetles. Mountain pine beetles are native to western forests, and they have evolved with the trees they infest, such as lodgepole pine and whitebark pine trees. However, in the last decade, warmer temperatures have caused pine beetle numbers to skyrocket. Huge areas of red, dying forest now span from British Columbia through Colorado, and there's no sign the outbreak is slowing in many areas.

The affected regions are so large that NASA satellites, such as Landsat, can even detect areas of beetle-killed forest from space. Today, NASA has released a new video about how scientists can use Landsat satellite imagery to map these pine beetle outbreaks, and what impact the beetle damage might have on forest fire. As the dog days of summer hit full force, some say the pine beetles have transformed healthy forest into a dry tinderbox primed for wildfire. For Yellowstone National Park Vegetation Management Specialist Roy Renkin, those worries are nothing new. "I've heard [the tinderbox analogy] ever since I started my professional career in the forestry and fire management business 32 years ago," he said. "But having the opportunity to observe such interaction over the years in regards to the Yellowstone natural fire program, I must admit that observations never quite met with the expectation."

The idea that beetle damaged trees increase fire risks seems a logical assumption dead trees appear dry and flammable, whereas green foliage looks more moist and less likely to catch fire. But do pine beetles really increase the risk of fire in lodgepole pine forest? University of Wisconsin forest ecologists Monica Turner and Phil Townsend, in collaboration with Renkin, are studying the connection in the forests near Yellowstone National Park. Their work and their surprising preliminary results are the subject of the NASA video. First, the researchers used Landsat data to create maps of areas hardest hit by the recent beetle outbreak. The Landsat satellites capture imagery not just in the visible spectrum, but also in wavelengths invisible to the human eye. One such wavelength band combination includes the near infrared, a part of the spectrum in which healthy plants reflect a great deal of energy. By scanning the Landsat near infrared imagery, the team located areas of probable beetle damage.