Showing posts with label black hole. Show all posts
Showing posts with label black hole. Show all posts

NASA-Discovered Symmetry In Black Hole Jets

Black Hole Jets

Scientists at NASA have exposed a new stable that links various sizes of black holes. A black hole jet is the torrent of gamma radiation frequently emitted from the ‘event horizon’; the innermost rim and point of no go back, of a black hole. When gas gets sucked inside of the black hole, some of the substance becomes accelerated and races external as a pair of jets curving in opposite directions. Jets are seen in black holes of a lot of different sizes; from the modest-shaped, to the behemoth holes that power the centers of galaxies.

The group of scientists at NASA examined 54 gamma-ray bursts (GRBs) as of the minor black holes and compared them to 234 blazers and quasars, the galactic-scale corresponding of GRBs emitted from super enormous black holes. The NASA team found the same set of physical rules governed the size of these jets, apart from of the black hole size.

Space Telescopes Reveal Secrets of Turbulent Black Hole

Space Telescopes

A fleet of spacecraft including NASA's Hubble Space Telescope has uncovered unprecedented details in the surroundings of a supermassive black hole. Observations reveal huge bullets of gas being driven away from the gravitational monster and a corona of very hot gas hovering above the disk of matter that is falling into the black hole.

A team led by Jelle Kaastra of SRON Netherlands Institute for Space Research made use of data from ESA's XMM-Newton and INTEGRAL spacecraft (which study X-rays and gamma rays, respectively), the Hubble Space Telescope (for ultraviolet observations with the COS instrument), and NASA's Chandra (X-ray) Observatory and Swift (gamma-ray) satellites.

The black hole that the team chose to study lies at the heart of the galaxy Markarian 509 (Mrk 509), nearly 500 million light-years away. This black hole is colossal, containing 300 million times the mass of the Sun, and is growing more massive every day as it continues to feed on surrounding matter, which glows brightly as it forms a rotating disk around the black hole. Mrk 509 was chosen because it is known to vary in brightness, which indicates that the flow of matter is turbulent.

Researchers Detail How A Distant Black Hole Devoured A Star

Black Hole Devoured A Star

Two studies appearing in the Aug. 25 issue of the journal Nature provide new insights into a cosmic accident that has been streaming X-rays toward Earth since late March. NASA's Swift satellite first alerted astronomers to intense and unusual high-energy flares from the new source in the constellation Draco.

"Incredibly, this source is still producing X-rays and may remain bright enough for Swift to observe into next year," said David Burrows, professor of astronomy at Penn State University and lead scientist for the mission's X-Ray Telescope instrument. "It behaves unlike anything we've seen before."

Astronomers soon realized the source, known as Swift J1644+57, was the result of a truly extraordinary event -- the awakening of a distant galaxy's dormant black hole as it shredded and consumed a star. The galaxy is so far away, it took the light from the event approximately 3.9 billion years to reach Earth.

Punching Holes in the Sky

Holes in Sky

Scientists, photographers and amateur cloud watchers have been looking up with wonderment and puzzlement at "hole punch" clouds for decades. Giant, open spaces appear in otherwise continuous cloud cover, presenting beautiful shapes but also an opportunity for scientific investigation. A new paper published last week in Science inquires into how the holes get punched – airplanes are the culprit – and into the potential for the phenomenon's link to increased precipitation around major airports.

"It appears to be a rather widespread effect for aircraft to inadvertently cause some measureable amount of rain or snow as they fly through certain clouds," said lead author Andrew Heymsfield of the National Center for Atmospheric Research, Boulder, Co. "This is not necessarily enough precipitation to affect global climate, but it is likely to be noticeable around major airports in the midlatitudes."

NASA Langley Research Center cloud specialist Patrick Minnis was one of the co-authors on the paper. NASA satellites Aqua, Terra, CALIPSO and CloudSat were used in the analysis. The research was also partly funded by NASA grants.

NASA's Fermi Telescope Finds Giant Structure in our Galaxy

http://nasa-satellites.blogspot.com/
NASA's Fermi Gamma-ray Space Telescope has unveiled a previously unseen structure centered in the Milky Way. The feature spans 50,000 light-years and may be the remnant of an eruption from a supersized black hole at the center of our galaxy. "What we see are two gamma-ray-emitting bubbles that extend 25,000 light-years north and south of the galactic center," said Doug Finkbeiner, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who first recognized the feature. "We don't fully understand their nature or origin." The structure spans more than half of the visible sky, from the constellation Virgo to the constellation Grus, and it may be millions of years old. A paper about the findings has been accepted for publication in The Astrophysical Journal.

Finkbeiner and his team discovered the bubbles by processing publicly available data from Fermi's Large Area Telescope (LAT). The LAT is the most sensitive and highest-resolution gamma-ray detector ever launched. Gamma rays are the highest-energy form of light. Other astronomers studying gamma rays hadn't detected the bubbles partly because of a fog of gamma rays that appears throughout the sky. The fog happens when particles moving near the speed of light interact with light and interstellar gas in the Milky Way. The LAT team constantly refines models to uncover new gamma-ray sources obscured by this so-called diffuse emission. By using various estimates of the fog, Finkbeiner and his colleagues were able to isolate it from the LAT data and unveil the giant bubbles.

Scientists now are conducting more analyses to better understand how the never-before-seen structure was formed. The bubble emissions are much more energetic than the gamma-ray fog seen elsewhere in the Milky Way. The bubbles also appear to have well-defined edges. The structure's shape and emissions suggest it was formed as a result of a large and relatively rapid energy release - the source of which remains a mystery. One possibility includes a particle jet from the supermassive black hole at the galactic center. In many other galaxies, astronomers see fast particle jets powered by matter falling toward a central black hole. While there is no evidence the Milky Way's black hole has such a jet today, it may have in the past. The bubbles also may have formed as a result of gas outflows from a burst of star formation, perhaps the one that produced many massive star clusters in the Milky Way's center several million years ago.