A new image from the Planck mission shows what it's been up to for the past year surveying the entire sky for clues to our universal origins. Planck, a European Space Agency mission with significant participation from NASA, has been busily scanning the whole sky at nine frequencies of light, with the ultimate goal of isolating fluctuations in the cosmic microwave background or light from the beginning of time. These fluctuations represent the seeds from which structure in our universe evolved.
"This image shows both our Milky Way galaxy and the universe 380,000 years after the Big Bang in one expansive view," said Charles Lawrence, the NASA project scientist for the mission at the Jet Propulsion Laboratory in Pasadena, Calif. "The radiation from the Milky Way traveled hundreds or thousands of years to reach us, while the radiation from the early universe traveled 13.7 billion years to reach us. What we see in this picture happened at very different times."
The picture has been color-coded to show how the sky looks over the range of frequencies observed by Planck. Planck detects light that we can't see with our eyes light with low frequencies ranging from 30 to 857 gigahertz. The disk of the Milky Way galaxy, seen edge-on from Earth's perspective, is the bright band running horizontally down the middle. Diffuse, huge clouds of gas and dust relatively close to us in our galaxy can be seen above and below this band. The cosmic microwave background is apparent as the grainy structure towards the top and bottom of the image.
"This image shows both our Milky Way galaxy and the universe 380,000 years after the Big Bang in one expansive view," said Charles Lawrence, the NASA project scientist for the mission at the Jet Propulsion Laboratory in Pasadena, Calif. "The radiation from the Milky Way traveled hundreds or thousands of years to reach us, while the radiation from the early universe traveled 13.7 billion years to reach us. What we see in this picture happened at very different times."
The picture has been color-coded to show how the sky looks over the range of frequencies observed by Planck. Planck detects light that we can't see with our eyes light with low frequencies ranging from 30 to 857 gigahertz. The disk of the Milky Way galaxy, seen edge-on from Earth's perspective, is the bright band running horizontally down the middle. Diffuse, huge clouds of gas and dust relatively close to us in our galaxy can be seen above and below this band. The cosmic microwave background is apparent as the grainy structure towards the top and bottom of the image.
No comments:
Post a Comment